Strict topoligies in non-Archimedean function spaces
نویسندگان
چکیده
منابع مشابه
System of AQC functional equations in non-Archimedean normed spaces
In 1897, Hensel introduced a normed space which does not have the Archimedean property. During the last three decades theory of non--Archimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, p--adic strings and superstrings. In this paper, we prove the generalized Hyers--Ulam--Rassias stability for a ...
متن کاملTropical Dolbeault Cohomology of Non-archimedean Spaces
In this survey article, we discuss some recent progress on tropical Dolbeault cohomology of varieties over non-Archimedean fields, a new cohomology theory based on real forms defined by Chambert-Loir and Ducros.
متن کاملNon-archimedean Analytification of Algebraic Spaces
1.1. Motivation. This paper is largely concerned with constructing quotients by étale equivalence relations. We are inspired by questions in classical rigid geometry, but to give satisfactory answers in that category we have to first solve quotient problems within the framework of Berkovich’s k-analytic spaces. One source of motivation is the relationship between algebraic spaces and analytic s...
متن کاملDescent for Non-archimedean Analytic Spaces
In the theory of schemes, faithfully flat descent is a very powerful tool. One wants a descent theory not only for quasi-coherent sheaves and morphisms of schemes (which is rather elementary), but also for geometric objects and properties of morphisms between them. In rigid-analytic geometry, descent theory for coherent sheaves was worked out by Bosch and Görtz [BG, 3.1] under some quasi-compac...
متن کاملTropical varieties for non-archimedean analytic spaces
For the whole paper, K denotes an algebraically closed field endowed with a nontrivial non-archimedean complete absolute value | |. The corresponding valuation is v := − log | | with value group Γ := v(K). The valuation ring is denoted by K. Note that the residue field K̃ is algebraically closed. In Theorem 1.3, §8 and in the second part of §9, we start with a field K endowed with a discrete val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1984
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s016117128400003x